天博在线官网

English
创新创业Innovation
创新创业
当前位置: 首页  > 创新创业  > 正文
人工智能与知识发现团队在人工智能药物发现领域取得新进展
作者:熊展坤编辑:黄玮审核:章文发布时间:2022-11-23

多关系对比学习图神经网络MRCGNN

多关系对比学习图神经网络MRCGNN

南湖新闻网讯(通讯员 熊展坤)近日,我校信息学院人工智能与知识发现团队以“Multi-relational Contrastive Learning Graph Neural Network for Drug-drug Interaction Event Prediction”为题的论文被国际人工智能领域会议AAAI-2023(The 37th AAAI Conference on Artificial Intelligence)录用。研究团队提出了一种新的药物反应事件预测方法,解决了现有方法药物信息整合不全,罕见药物反应事件预测精度低的问题。

在同时使用多种药物来联合治疗复杂疾病时,药物间的相互作用可能会带来意想不到的不良后果,如药物疗效降低或药物毒性增加等,这些不良后果称为药物反应事件。如何精准预测药物反应事件,避免对病人造成伤害,产生巨额医疗费用,是近年来人工智能与药物发现领域的热点研究问题。当前药物反应事件预测方法通常单一地考虑药物分子结构信息或药物交互信息,且对于一些发生率较低的药物反应事件(称为罕见药物反应事件)的预测精度较低,这些都限制了药物反应事件预测模型的性能。

为解决上述问题,我校研究团队提出了一种名为“多关系对比学习图神经网络”的药物反应事件预测方法MRCGNN。该方法将药物分子结构信息和药物交互信息进行分层整合,并在药物反应事件关联图上使用新设计的,基于双视图负对应增强策略的多关系对比学习来捕获关于罕见药物反应事件的隐含信息。

研究团队将MRCGNN与仅使用药物分子结构信息和仅使用药物交互信息的基线方法进行了对比,预测准确度分别提升6.10%和3.99%。此外,MRCGNN在罕见事件预测任务中,较之前性能表现最好的对比方法,预测准确度提升了大约30.75%。实验表明,药物分子结构信息和药物交互信息的整合能够充分利用不同信息提升模型性能,而研究团队所设计的多关系对比学习框架能够有效增强对罕见药物反应事件的表征和预测能力。因此,MRCGNN方法相比于现有方法具有更高的药物反应事件预测精度,并且能够显著提高模型预测罕见药物反应事件的能力。

信息学院博士生熊展坤、刘世超老师和博士生黄锋为论文共同第一作者,信息学院章文教授为论文通讯作者。信息学院博士生王紫嫣、博士生刘旋和纽约州立大学Binghamton分校张仲非教授(IEEE Fellow)也参与了该研究工作。

---友情链接---
天博在线官网 中国研究生招生信息网 中国学位与研究生教育信息网

版权所有:天博在线官网   党委研究生工作部

地址:湖北省武汉市洪山区狮子山街1号天博在线官网

天博在线官网 | 电子有限公司